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Abstract—Access to data plays a major role in designing and
performing efficient data computation and analyses in a dis-
tributed environment. Existing approaches access data via a vari-
ety of methods and offer various benefits and drawbacks based on
the use case. Our original use case was the computational analysis
of environmental sequence data, or metagenomics. Unlike other
workflows that often reduce the dataset size dramatically within
the first few processing steps, owing to biologially-motivated
data compression. Metagenomic data compresses poorly, and so
metagenomic workflows add to the size of the data set along the
processing pipeline. Thus, wide-area, high-throughput access to
the data is essential.

To address this problem, we developed Shock, a data store
for files, their associated metadata, and indexes that allow Shock
to provide different views into the data. Shock comprises three
major components: a web service that provides a RESTful API,
backend data storage for files, and storage for object metadata.
Shock has proven to be a stable data store for MG-RAST, an
application that served over 40,000 users in 2014 on a server
that houses more than 3 million data objects. Moreover, Shock
provides both subselection and high-performance file transfer
capabilities that serve most usages.

Index Terms—bioinformatics, metagenomics, active object
store, distributed wide-area computing

I. INTRODUCTION

Access to data plays a major role in efficient data compu-
tation and analyses [1]. Existing approaches access data via
a variety of methods including local file systems, network-
attached persistent block-level storage volumes. Each system
offers benefits and drawbacks based on the use case. For
example, object-based storage systems provide the needed
scalability; but they mostly treat the data as a blob (binary
large objects), which is not ideal for splitting large data objects
into smaller subunits for parallel computations.

Our study was motivated by a use case involving the compu-
tational analysis of environmental sequence data (i.e., metage-
nomics) [2]. Metagenomics differs from other scientific—and
notably bioinformatics—workflows. Whereas other workflows
often reduce the size of the data sets dramatically within

the first few processing steps [3], metagenomics adds to the
size of the data set along the processing pipeline. Moreover,
metagenomics often involves decisions that cannot be made
until analysis time.

Our particular use case involved the MG-RAST metage-
nomic analysis portal and pipeline [4]. MG-RAST users
upload data via either a web portal or an API [5], and
the automated processing pipeline transforms the data into
a common file format before producing annotations on the
sequences in those files. Some pipeline parameters can be
tuned by the users at submission time, and individual work
units are then distributed to a pool of clients for processing and
analyzing the data. When these computations have completed,
the results are stored on the MG-RAST servers for users to
download and/or analyze.

When we operated distributed file systems such as NFS
or Lustre with MG-RAST, we failed to achieve the required
wide-area, high-throughput access to the data. Our solution
was to develop Shock—a data store for files, their associated
metadata, and indexes that allow users different views into
the data—that can efficiently scale data access in a distributed
environment.

First, we discuss the requirements of our use case. We then
describe the design and implementation of Shock, followed by
our results using Shock on MG-RAST. We conclude with a
summary and a brief look at future work.

II. USE CASE REQUIREMENTS

Our use case required a data storage solution that could
provide access to clients across wide-area networks, ad-
ministrative domains, and system architectures, without the
installation of a specific file system, network, or network
access reconfiguration or reformatting. Ideally, this would
allow others to dynamically contribute compute clients to
our infrastructure while minimizing the amount of overhead
needed to do so. We required a data store that could deliver
data at high speeds to at least hundreds of compute clients



across remote locations in parallel, with little load on the data
server or the clients. We wanted the delivery speed also to
be independent of the programming languages being used to
perform the computation. Additionally, we wanted the ability
to index our data objects in order to serve subsets of the data to
multiple compute nodes and/or to perform analysis operations
with varying index-defined subsets. And, we wanted users to
be able to implement and extend the library of pluggable file
parsers. For example, one could imagine using a parser to
index all the sequences in a file, but using a second parser to
index all of the sequence clusters in the same file.

For efficiency of resources, we desired that our data storage
avoid data duplication. And, we wanted to be able to encapsu-
late all our metadata in this storage engine and make our data
searchable by system- and user-defined metadata. Furthermore,
we desired a solution where our data not only could be stored
for computation but also could serve as a long-term backend
data store for our production services. Thus, the data had
to be individually addressable without namespace collisions
between the numerous temporary objects/files produced during
a workflow and the data that is stored long term.

We examined a number of existing technologies for these
and other desired features. The results are listed in Table 1.
As shown in the table, none of the existing tools met all
our requirements. Thus, we sought to create an open source
object storage application with features that complemented the
existing solutions but also enabled users to plug in subsetting
engines specific to their use case, in order to further increase
I/O performance in a parallel and distributed compute envi-
ronment.

TABLE I
SURVEY OF EXISTING TECHNOLOGIES FOR OUR DESIRED FEATURE SET.

iRods S3 NFS Lustre Gridftp HDFS
AWAN + + - + -
AAB - + - – * -
FCD - + - + ++ -

INDEX - - - + limited -
Pluggable - - - - - +

ADD + - - - + -
SEARCH + - - na - -

LTS + + na na + ?
ZC - + – – - –

AWAN=across wide area networks, AAB=across administrative boundaries,
FCD=fast content delivery, INDEX=index data objects and subsets, PLUG-
GABLE=extend set of pluggable file parsers ADD=avoid data redundancy,
SEARCH=searchable metadata, LTS=long-term storage, ZC=zero config

III. SHOCK DESIGN AND IMPLEMENTATION

To meet our needs, we developed Shock, an object-based
data management system for biological data and metadata
management.

A. Design

The biological data itself should be stored in an efficient
backend file system or data store. The metadata can include
not just system information about file size, date of creation,
and permissions but also complex metadata objects that users

can define (a predefined schema is not required). Both system
metadata and user metadata are searchable in Shock, enabling
users easily to identify their data objects. Allowing for more
extensive metadata can help users organize their data objects
and inform users of data content and origin. In our target
application area, bioinformatics, data reuse is critical as anal-
ysis costs increase [6]. Reusability requires comprehensive
metadata describing the provenance of original data sets, as
well as computational provenance of downstream analysis
products. Shock provides consistent and comprehensive prove-
nance storage and query capabilities on this metadata.

Shock has a built-in, optimized, and extendable architec-
ture for index-based subsetting. Users can use the indexing
functions that come with Shock or create indexers. Creating
subsets from an indexed data file allows users to easily divide
their data into subsets for parallel computation and then have
Shock merge the results. These features reduce data transfer
overhead where clients require only a portion of an input data
object for a computation.

Shock provides clients with data access without having
to configure access to remote filesystems (and deal with all
the accompanying issues) in a wide-area, third-party setting.
Shock performs well in a distributed computing environment
and serves as a sweet spot between the typical parallel file sys-
tems used in HPC environments and distributed object stores.
Shock provides parallel streaming of data objects (similar to
Amazon’s S3) but also provides the tools for creating and
storing smart subsets of the data. Each Shock object receives
a universally unique identifier, and data is write-once (i.e.,
once data is uploaded to Shock, it cannot be modified), thus
ensuring data coherency.

While filesystems such as Lustre provide server-side seek()
operations allowing efficient client-side random access, Shock
implements even more computation inside the storage system.
This approach can save on more expensive I/O operations.
First, Shock computes a checksum on the data uploaded into
Shock so that one can verify the successful upload/download
of data to and from Shock. Second, upon user request, Shock
will build indexes on previously uploaded data object, which
can make the data more readily available via subsetting. Third,
Shock reduces the need for data duplication by providing the
ability to create virtual “copies” of data objects (in actuality,
just pointers to a single data object, although this is transparent
to the user). Fourth, Shock filters can be used to dynamically
reformat data objects on the fly by transforming data that is
requested, as it is being downloaded. Fifth, Shock allows for
upload followed by subsequent decompression of compressed
file types as well as downloading of a file in either compressed
or uncompressed format.

Using the AWE [7] compute platform, which integrates with
Shock, users can parallelize and scale their applications on
distributed compute resources across remote locations. All the
uploaded data and all subsequent data products are stored on
a Shock server. Each AWE work unit downloads input data
objects from Shock, performs some computation, and then
outputs data objects back to Shock. Some of the large data



objects that are frequently required for computation are cached
on the clients to reduce I/O overhead.

B. Implementation

Architecture: Shock comprises three major components: a
web service that provides a REST API, used for all interactions
with Shock; a backend data storage that handles the file
retrieval, update of metadata, and creation of indexes; and
MongoDB, which stores metadata, such as file attributes and
properties (ACLs, file size, file checksum, etc.) and user-
defined metadata (see Figure 1). Shock allows for complex
search queries and supports indexing of metadata fields, thus
enabling rapid queries of Shock objects (called nodes) by
universally unique identifier, creation date, and object permis-
sions. Additional indexes on node metadata can be specified
in Shock to suit different applications.

Fig. 1. Design overview of the SHOCK server.

The Shock node data file and indexes on the data itself are
stored to disk on the posix file system underlying Shock. Addi-
tionally, a BSON file is saved to each node’s data directory as a
replicate for the JSON document stored in a MongoDB for that
node. This file gets updated by Shock each time a modification
is made to the node’s metadata in MongoDB. Thus, if the
MongoDB backend for Shock were lost or corrupted, the data
could be recovered from disk by loading these BSON files
into MongoDB. Currently Shock supports standard posix file
systems; it can be built on top of any parallel or distributed
file system and could potentially be extended to run on top
of an object store such as Amazon S3. Shock also provides
access control via a standard ACL (access control list)-based
security model. It can be configured to use external OAuth 2.0
providers (e.g., Globus [8]), and users can share their data with
others. Shock is implemented in the Go programming language
[9], which provides lightweight threading for performing tasks
in parallel and contains extensive network communication
libraries suitable for this application.

Shock is an open-source project under a BSD style license
maintained at github.com/MG-RAST/Shock.

Data records and subsets: The creation of subsets of the
data suitable for processing can be handled as a preprocessing

step prior to one or many workflow steps; however, if done
client side (the normal convention), it will cause significant
I/O overhead for the entire data set to be transferred to clients
with sufficient local disk available for subsetting. Additionally,
results computed on diverse nodes need to be integrated, again
requiring significant local storage. In addition to mentioning
the resource requirements, ad hoc scripting for subsetting and
reintegration is error prone. For this purpose, we implemented
the notion of a record in Shock to refer to a single item within
a data object.

Within each node’s data directory is a subdirectory for
storing indexes to the data itself, for providing fast access
to structured sections (i.e., records) within the data. Figure
2a depicts how entries in an index file point to a section of
the data file. Figure 2b indicates how a chunk-record index is
designed to divide contiguous groups of records into similarly
sized chunks. This was important for attempting to equally
distribute a data set (and hence the computational workload)
across many clients in a distributed computing environment.
Other supported record types include lines in a text file and
lines grouped by column values. Additionally, a list of records
in a Shock node can be saved in Shock as a subset for later
reuse.

Fig. 2. Graphical depiction of Shock node indexes that reference Shock node
data files and provide fast access to regions (i.e., subsets) of the data file.

API: The Shock API is implemented in the Representational
State Transfer (REST) style [10]. The API has three resources.
The node resource is where users can upload, retrieve, and
delete data objects and metadata on the objects. When a new
data object is uploaded, a universally unique identifier (uuid)
is returned for the newly created Shock node. This makes data
objects uniquely addressable across datasets and makes data
integration across Shock servers possible. Operations within
the node resource allow users to modify ACLs and indexes
on the data. The preauth resource is used to provide one-
time-use public URL access to data that is otherwise private
and requires authentication. The wiki resource is where the
Shock API documentation is available for convenience after



TABLE II
SUMMARY OF NODE TYPES

Name Description
basic node single file

virtual node multiple files as one
parts node parallel creation of a single file in parts
copy node copy on delete

subset node subset of a parent node

deployment of a Shock server.
Shock has five node types (see Table 2). A basic node

stores a single data file as its contents. A virtual node contains
multiple nodes and automatically streams the data for those
child nodes as one contiguous file. A parts node is a single
node that can be written in multiple pieces. The number of
parts in a parts node can either be defined upon creation of
the node or declared to be “unknown” . If the number of parts
is defined, the node will automatically become immutable once
all parts have been uploaded. However, if the number of parts
was defined as “unknown”, a separate call to “close” the node
must be performed to merge the parts that have been uploaded
and make the node immutable. Combining the features of node
subsetting for download and parts nodes for uploading allows
parallel tasks to be split for computation on multiple clients
and the results to be merged into a single output node.

The fourth node type is a copy node. This is created by
copying an existing node in Shock. When a user requests a
copy of an existing node, the underlying data is not copied;
rather, a link to the data in the parent node is created in the
new node. If the original node is deleted, the data will be
moved to a new location, and no information will be lost. Thus,
copying a node does not require duplication of the underlying
data object. All this is handled by the Shock server thus; the
difference between a copy node and a basic node is transparent
to the user.

Shock also can create subset nodes. These nodes contain
information that represents a subset of the parent node’s data.
Using any supported record type, one can create a subset node
that contains a virtual file representing a subset of the data in
the parent node. This is applicable for workflows (especially
in bioinformatics) where data goes through several steps of
quality filtering and/or sampling and does not necessarily need
to be duplicated on disk. For tasks within a workflow for
which a filtered dataset is the output, Shock enables users to
create a subset node of the parent (input) node by uploading
a list of records. For distributed computation, this can have a
significant impact on I/O as well.

Metadata and query language: With the ability to store
a large number of data objects, users also need a way to
query and identify objects in Shock by their metadata with
an efficient query language. Metadata in Shock is stored in
MongoDB and thus takes the form of a JSON document.
This allows users to upload and store complex metadata
per node. The supported query language includes the ability
to query by Shock-generated node metadata (node ID, file
size, file checksum, node type, node creation time, and node

modification time) and user-uploaded node metadata (anything
stored in the uploaded JSON document). The Shock-generated
node metadata is indexed in MongoDB to enhance the per-
formance when querying those fields. Fields within the user-
uploaded node metadata can be indexed in MongoDB at the
administrative level by adding a list of fields to index to the
Shock configuration file at runtime. In addition to providing
the query capability for retrieving metadata fields equal to a
query value, Shock allows for query by range, string queries
with wildcards, and not operators.

Node metadata also can be used to store information about
where data came from and how it was derived. Moreover, each
Shock node has a separate field called “linkages” where a
user can store information about nodes that are linked (parent,
child, etc.) to the node object. Linkages form the basis of the
provenance chain together with the metadata. Node metadata
can also be a location to store descriptions and attributes about
the contents of the data.

While Shock can be run without any authentication require-
ments, the ACLs allow for management of data access permis-
sions. The node ACLs include an owner, a list of users with
read permissions, a list of users with write permissions, and a
list of users with delete permissions. The Shock administrator
and the node owner automatically have read, write, and delete
permissions on a node. Only the Shock administrator and the
node owner can change permissions on a node by adding or
removing a user from an ACL list (this includes changing
ownership of a node to another user). Additionally, ACLs can
be made “public”, thereby granting access to a node without
authentication.

IV. RESULTS AND EVALUATION

Shock was initially designed to facilitate the annotation and
analysis of large scale metagenomic sequence data within MG-
RAST. The requirements of this system included the ability to
store and retrieve thousands of submitted sequence files (and
millions of the derived files, also stored in Shock), while also
being able to serve subsets of these files in parallel to compute
clients without blocking on individual requests. Shock has
been used as the primary data store (both for serving data
to compute clients and as a long-term store) in MG-RAST
for more than 18 months now. Figure 3 shows the speeds of
uploads and downloads to and from Shock in our production
system. The average data transfer speed to and from this server
is roughly 100 MB/s. We are consistently operating over 300
AWE clients that are pushing and pulling data to and from a
single Shock server while also serving a portion of this data
to the scientific community through our production website
and API. Note that the figure shows a distinct subset of data
objects that take longer to upload to Shock, averaging roughly
1 MB/s. These represent the subset nodes produced during the
execution of the MG-RAST pipeline. These nodes take longer
to create because they require some server-side computation
to store the indices corresponding to these data subsets.
Nevertheless, they save a significant portion of disk space on



our Shock server (roughly 15%). Future developments could
include optimizing the creation time for subset nodes.

Fig. 3. Upload (red, on the left) and download (blue, on the right) speeds
to the MG-RAST Shock server displayed for different data set sizes. This
plot represents the load on the production SHOCK server for the MG-RAST
system in the period March 1–13, 2015. Some of the upload operations are
slower because their creation (subset nodes) requires some computation.

V. SUMMARY AND DISCUSSION

Shock has proven to be a stable data store for MG-RAST,
an application that served over 40,000 users in 2014 on a
server that houses more than 3 million data objects. Combining
Shock and AWE, we have provided an efficient model for
wide-area workflow execution. Analysis computations are a
primary use case for the APIs provided by Shock. These com-
putations have a broad range of workloads: some with a high
computation to input data ratio, others with a relatively low
ratio. Shock provides both subselection and high-performance
file transfer capabilities that serve both usages and anything
in between.

Over time we have upgraded from five NFS servers to a
single Shock server that serves data in production at a peak
rate of nearly 10 Gbit/sec. Several end users for the MG-
RAST system have already installed virtual machines with
Shock data access on computational systems. We have outlined
an API for efficient workflow execution across wide-area
networks in metagenomics. This could serve as the basis for
a discussion about an efficient wide-area data access API for
bioinformatics data in general. This model may not be suitable
for all workflow types; but where it is applicable, Shock can
be utilized for server-side provisioning and integration of data.

Future goals include extending the Shock application to plug
into different backend data storage systems including HDFS
and Amazon S3. Extending the application in this manner
would make Shock’s features appealing to a larger audience.
Likewise, by engaging further with the bioinformatics and
other big data communities, we hope to extend the abilities
of Shock for indexing a wide array of common file types.
Furthermore, making the Shock application federated would
allow scientists from various locations to share and integrate
data more freely and easily, while still maintaining access
control and limiting data duplication. The most obvious path
appears to be placing objects in a namespace dependent on
where they are located; the namespace would need to be
globally maintained and would allow objects to be individually
addressable across all Shock servers.
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